694 research outputs found

    Comparing High Dimensional Word Embeddings Trained on Medical Text to Bag-of-Words For Predicting Medical Codes

    Get PDF
    Word embeddings are a useful tool for extracting knowledge from the free-form text contained in electronic health records, but it has become commonplace to train such word embeddings on data that do not accurately reflect how language is used in a healthcare context. We use prediction of medical codes as an example application to compare the accuracy of word embeddings trained on health corpora to those trained on more general collections of text. It is shown that both an increase in embedding dimensionality and an increase in the volume of health-related training data improves prediction accuracy. We also present a comparison to the traditional bag-of-words feature representation, demonstrating that in many cases, this conceptually simple method for representing text results in superior accuracy to that of word embeddings

    The He-shell flash in action: T Ursae Minoris revisited

    Get PDF
    We present an updated and improved description of the light curve behaviour of T Ursae Minoris, which is a Mira star with the strongest period change (the present rate is an amazing -3.8+/-0.4 days/year corresponding to a relative decrease of about 1% per cycle). Ninety years of visual data were collected from all available databases and the resulting, almost uninterrupted light curve was analysed with the O-C diagram, Fourier analysis and various time-frequency methods. The Choi-Williams and Zhao-Atlas-Marks distributions gave the clearest image of frequency and light curve shape variations. A decrease of the intensity average of the light curve was also found, which is in accordance with a period-luminosity relation for Mira stars. We predict the star will finish its period decrease in the meaningfully near future (c.c. 5 to 30 years) and strongly suggest to closely follow the star's variations (photometric, as well as spectroscopic) during this period.Comment: 6 pages, 7 figures, accepted for publication in A&

    Evidence for a vector charmonium-like state in e+eDs+Ds2(2573)+c.c.e^+e^- \to D^+_sD^*_{s2}(2573)^-+c.c.

    Get PDF
    We report the measurement of e+eDs+Ds2(2573)+c.c.e^+e^- \to D^+_sD^*_{s2}(2573)^-+c.c. via initial-state radiation using a data sample of an integrated luminosity of 921.9 fb1^{-1} collected with the Belle detector at the Υ(4S)\Upsilon(4S) and nearby. We find evidence for an enhancement with a 3.4σ\sigma significance in the invariant mass of Ds+Ds2(2573)+c.c.D^+_sD^*_{s2}(2573)^- +c.c. The measured mass and width are (4619.88.0+8.9(stat.)±2.3(syst.)) MeV/c2(4619.8^{+8.9}_{-8.0}({\rm stat.})\pm2.3({\rm syst.}))~{\rm MeV}/c^{2} and (47.014.8+31.3(stat.)±4.6(syst.)) MeV(47.0^{+31.3}_{-14.8}({\rm stat.})\pm4.6({\rm syst.}))~{\rm MeV}, respectively. The mass, width, and quantum numbers of this enhancement are consistent with the charmonium-like state at 4626 MeV/c2c^2 recently reported by Belle in e+eDs+Ds1(2536)+c.c.e^+e^-\to D^+_sD_{s1}(2536)^-+c.c. The product of the e+eDs+Ds2(2573)+c.c.e^+e^-\to D^+_sD^*_{s2}(2573)^-+c.c. cross section and the branching fraction of Ds2(2573)Dˉ0KD^*_{s2}(2573)^-\to{\bar D}^0K^- is measured from Ds+Ds2(2573)D^+_sD^*_{s2}(2573)^- threshold to 5.6 GeV.Comment: 9 pages, 4 figure

    Effect of a Dipeptidyl Peptidase-IV Inhibitor, Des-Fluoro-Sitagliptin, on Neointimal Formation after Balloon Injury in Rats

    Get PDF
    Background: Recently, it has been suggested that enhancement of incretin effect improves cardiac function. We investigated the effect of a DPP-IV inhibitor, des-fluoro-sitagliptin, in reducing occurrence of restenosis in carotid artery in response to balloon injury and the related mechanisms. Methods and Findings: Otsuka Long-Evans Tokushima Fatty rats were grouped into four: control (normal saline) and sitagliptin 100, 250 and 500 mg/kg per day (n = 10 per group). Sitagliptin or normal saline were given orally from 1 week before to 2 weeks after carotid injury. After 3 weeks of treatment, sitagliptin treatment caused a significant and dose-dependent reduction in intima-media ratio (IMR) in obese diabetic rats. This effect was accompanied by improved glucose homeostasis, decreased circulating levels of high-sensitivity C-reactive protein (hsCRP) and increased adiponectin level. Moreover, decreased IMR was correlated significantly with reduced hsCRP, tumor necrosis factor-α\alpha and monocyte chemoattractant protein-1 levels and plasminogen activator inhibitor-1 activity. In vitro evidence with vascular smooth muscle cells (VSMCs) demonstrated that proliferation and migration were decreased significantly after sitagliptin treatment. In addition, sitagliptin increased caspase-3 activity and decreased monocyte adhesion and NFκB activation in VSMCs. Conclusions: Sitagliptin has protective properties against restenosis after carotid injury and therapeutic implications for treating macrovascular complications of diabetes

    Synthesis and Photoluminescence Property of Silicon Carbide Nanowires Via Carbothermic Reduction of Silica

    Get PDF
    Silicon carbide nanowires have been synthesized at 1400 °C by carbothermic reduction of silica with bamboo carbon under normal atmosphere pressure without metallic catalyst. X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy and Fourier transformed infrared spectroscopy were used to characterize the silicon carbide nanowires. The results show that the silicon carbide nanowires have a core–shell structure and grow along <111> direction. The diameter of silicon carbide nanowires is about 50–200 nm and the length from tens to hundreds of micrometers. The vapor–solid mechanism is proposed to elucidate the growth process. The photoluminescence of the synthesized silicon carbide nanowires shows significant blueshifts, which is resulted from the existence of oxygen defects in amorphous layer and the special rough core–shell interface

    The phosphomimetic mutation of syndecan-4 binds and inhibits Tiam1 modulating Rac1 activity in PDZ interaction-dependent manner

    Get PDF
    The small GTPases of the Rho family comprising RhoA, Rac1 and Cdc42 function as molecular switches controlling several essential biochemical pathways in eukaryotic cells. Their activity is cycling between an active GTP-bound and an inactive GDP-bound conformation. The exchange of GDP to GTP is catalyzed by guanine nucleotide exchange factors (GEFs). Here we report a novel regulatory mechanism of Rac1 activity, which is controlled by a phosphomimetic (Ser179Glu) mutant of syndecan-4 (SDC4). SDC4 is a ubiquitously expressed transmembrane, heparan sulfate proteoglycan. In this study we show that the Ser179Glu mutant binds strongly Tiam1, a Rac1-GEF reducing Rac1-GTP by 3-fold in MCF-7 breast adenocarcinoma cells. Mutational analysis unravels the PDZ interaction between SDC4 and Tiam1 is indispensable for the suppression of the Rac1 activity. Neither of the SDC4 interactions is effective alone to block the Rac1 activity, on the contrary, lack of either of interactions can increase the activity of Rac1, therefore the Rac1 activity is the resultant of the inhibitory and stimulatory effects. In addition, SDC4 can bind and tether RhoGDI1 (GDP-dissociation inhibitor 1) to the membrane. Expression of the phosphomimetic SDC4 results in the accumulation of the Rac1-RhoGDI1 complex. Co-immunoprecipitation assays (co-IP-s) reveal that SDC4 can form complexes with RhoGDI1. Together, the regulation of the basal activity of Rac1 is fine tuned and SDC4 is implicated in multiple ways

    Changes in the gastric enteric nervous system and muscle: A case report on two patients with diabetic gastroparesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pathophysiological basis of diabetic gastroparesis is poorly understood, in large part due to the almost complete lack of data on neuropathological and molecular changes in the stomachs of patients. Experimental models indicate various lesions affecting the vagus, muscle, enteric neurons, interstitial cells of Cajal (ICC) or other cellular components. The aim of this study was to use modern analytical methods to determine morphological and molecular changes in the gastric wall in patients with diabetic gastroparesis.</p> <p>Methods</p> <p>Full thickness gastric biopsies were obtained laparoscopically from two gastroparetic patients undergoing surgical intervention and from disease-free areas of control subjects undergoing other forms of gastric surgery. Samples were processed for histological and immunohistochemical examination.</p> <p>Results</p> <p>Although both patients had severe refractory symptoms with malnutrition, requiring the placement of a gastric stimulator, one of them had no significant abnormalities as compared with controls. This patient had an abrupt onset of symptoms with a relatively short duration of diabetes that was well controlled. By contrast, the other patient had long standing brittle and poorly controlled diabetes with numerous episodes of diabetic ketoacidosis and frequent hypoglycemic episodes. Histological examination in this patient revealed increased fibrosis in the muscle layers as well as significantly fewer nerve fibers and myenteric neurons as assessed by PGP9.5 staining. Further, significant reduction was seen in staining for neuronal nitric oxide synthase, heme oxygenase-2, tyrosine hydroxylase as well as for c-KIT.</p> <p>Conclusion</p> <p>We conclude that poor metabolic control is associated with significant pathological changes in the gastric wall that affect all major components including muscle, neurons and ICC. Severe symptoms can occur in the absence of these changes, however and may reflect vagal, central or hormonal influences. Gastroparesis is therefore likely to be a heterogeneous disorder. Careful molecular and pathological analysis may allow more precise phenotypic differentiation and shed insight into the underlying mechanisms as well as identify novel therapeutic targets.</p

    Liquid marble-derived solid-liquid hybrid superparticles for CO2 capture.

    Get PDF
    The design of effective CO2 capture materials is an ongoing challenge. Here we report a concept to overcome current limitations associated with both liquid and solid CO2 capture materials by exploiting a solid-liquid hybrid superparticle (SLHSP). The fabrication of SLHSP involves assembly of hydrophobic silica nanoparticles on the liquid marble surface, and co-assembly of hydrophilic silica nanoparticles and tetraethylenepentamine within the interior of the liquid marble. The strong interfacial adsorption force and the strong interactions between amine and silica are identified to be key elements for high robustness. The developed SLHSPs exhibit excellent CO2 sorption capacity, high sorption rate, long-term stability and reduced amine loss in industrially preferred fixed bed setups. The outstanding performances are attributed to the unique structure which hierarchically organizes the liquid and solid at microscales
    corecore